Potential Use of Quartzipisamment under Agroforestry and Silvopastoral System for Large-Scale Production in Brazil

Author:

Marçal Maria Fernanda Magioni,de Souza Zigomar Menezes,Tavares Rose Luiza MoraesORCID,Farhate Camila Vieira Viana,Júnior Raul Evaristo Monteiro,de Souza Lima Elizeu,Lovera Lenon Henrique

Abstract

The need to put into practice sustainable agricultural production systems has been supported by agroecology science that seeks to optimize land use to food production with the lowest impact on soil. This study evaluated soil quality, based on physical and chemical attributes, in agroforestry (AGF) and silvopastoral (SILVP) systems developed for large-scale food production. The study was carried out in the municipality of Itirapina, state of São Paulo, in two areas with AGF and SILVP system, compared to an area with a forest fragment and another with pasture in a Quartzipisamment Sand Neosol. The soil collections were carried out in the layers of 0.00–0.05, 0.05–0.10, 0.10–0.20, and 0.20–0.40 m, where physical soil attributes were evaluated (total porosity, microporosity, and microporosity, density, mean diameter of aggregates) as well as chemical attributes (macro- and micronutrients), in addition to carbon and nitrogen storage. To interpret the data, Tukey’s test was applied to compare means, and principal component analysis was used to better characterize the study environments. The results showed that agroforestry and silvopastoral systems developed for large-scale production are efficient in improving chemical and physical attributes that reflect on soil quality, especially in the superficial layers of the soil, overcoming pasture and the natural regeneration process. Carbon and nitrogen storage were the main variables that differentiated the production systems, highlighting the importance of the AGF and SILVP systems as more sustainable agricultural intensification strategies, even in soils of low agricultural suitability.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3