The Impact of an Alien Snail Pomacea canaliculata Invading Coastal Saline Soils on Soil Chemical and Biological Properties

Author:

Chen Qi1234,Zhou Yingying1234,Qi Yue1234,Zeng Wen1234,Shi Zhaoji1234,Liu Xing1234,Zhang Jiaen1234ORCID

Affiliation:

1. Guangdong Engineering Research Center for Modern Eco-Agriculture and Circular Agriculture, Guangzhou 510642, China

2. Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China

3. Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou 510642, China

4. Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China

Abstract

Recent studies have indicated that the invasive apple snail (Pomacea canaliculata) exhibits tolerance to the salinity levels present in coastal agricultural soils, suggesting that apple snails could potentially invade salt-affected coastal agricultural areas. However, the effects of the alien snail Pomacea canaliculata invasion on coastal saline soils, such as in terms of soil properties, microbial diversity, and abundance, remain poorly understood. To fill this gap, we conducted experiments involving three salinity levels (0, 2‰, and 5‰, w/w), coupled with varying snail densities (0, 5, and 10 snails per box), applied to agricultural soil. We analyzed soil chemical properties, enzyme activities, and bacterial communities. The findings revealed that heightened soil salinity increased soil electrical conductivity (EC) (exceeding 1312.67 μS cm−1). Under saline conditions, snail treatments significantly increased the soil organic matter (SOM) content from 15.82 mg kg−1 to 18.69 mg kg−1, and concurrently diminished the dissolved organic carbon (DOC) from 47.45 mg kg−1 to 34.60 mg kg−1. Both snail and salinity treatments resulted in ammonia nitrogen (NH4+-N) accumulation, while nitrate nitrogen (NO3−-N) concentrations remained low in salt-affected soils. A notable positive correlation existed between the EC and the activities of hydroxylamine reductase (HR) and peroxidase (POD), where HR exhibited a positive correlation with NH4+-N, and POD displayed a negative correlation with NO3−-N. Salinity substantially decreased the diversity and altered the composition of soil bacterial community, with the phyla Bacteroidota, Proteobacteria, and Firmicutes adapting to salt-affected soil environment and proliferating. Structural equation modeling (SEM) analysis indicated that snails exerted a direct influence on soil-available nitrogen (including NO3−-N and NH4+-N), while salinity impacted available nitrogen by modulating soil enzyme activities and bacterial communities. Our findings provide insights into how soil responds to the concurrent impacts of snail invasion and soil salinization, establishing some references for future research.

Funder

National Natural Science Foundation of China

Guangdong Science and Technology Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3