Mitigation of Elevated CO2 Concentration on Warming-Induced Changes in Wheat Is Limited under Extreme Temperature during the Grain Filling Period

Author:

Yang Jing12,Feng Yue1,Chi Tian1,Wen Qiang1,Liang Pan1,Wang Aiping1,Li Ping1

Affiliation:

1. College of Agriculture, Shanxi Agricultural University, Taigu 030801, China

2. Maize Research Institute, Shanxi Agricultural University, Xinzhou 034000, China

Abstract

Elevated CO2 concentration (eCO2) generally increases plant growth by improving photosynthesis, but it is unclear whether eCO2 can alleviate the negative effects of elevated temperatures, especially in high-temperature years. Manipulative experiments with elevated [CO2] and temperature were conducted in North China to understand the effect of elevated CO2 concentration and temperature on wheat. The photosynthesis, An–PAR and A–Ci curve parameters, growth period, biomass, yield component, and yield of wheat were investigated under different [CO2] (around 400 and 600 ppm) and temperatures (ambient temperature and ambient temperature +2 °C) for 3 years by using controlled chambers. Results showed that elevated temperature significantly shortened the growth period and decreased the yield and biomass of wheat. Elevated [CO2] significantly increased the maximum net photosynthetic rate (Anmax) but reduced the maximum carboxylation rate (Vcmax) and the maximum electron transport rate (Jmax). The extremely high temperature during the grain filling period in 2019 exerted a serious negative impact on wheat production. Elevated [CO2] stimulated photosynthesis, increased kernel number per spike, and extended the duration of the grain filling period, which consequently increased biomass and grain yield under elevated temperatures in normal years (2018 and 2020). Although the combination of CO2 and temperature reduced photosynthesis and biomass, it also alleviated the negative impact of elevated temperatures on grain yield to some extent under extremely high temperature during the grain filling period in 2019. The mitigative effect of eCO2 under extreme high temperature is limited, and planting early-maturing cultivars or increasing the genotypes of kernel number per spike help to escape the extreme high temperature of the critical growth period.

Funder

Youth Scientific Research Project of Shanxi Provincial Basic Research Program

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3