Strigolactones in Sugarcane Growth and Development

Author:

Zan Fenggang1,Wu Zhuandi1,Wang Wenzhi2,Hu Xin1,Feng Lu1,Liu Xinlong1,Liu Jiayong1,Zhao Liping1,Wu Caiwen1,Zhang Shuzhen2,Guo Jiawen1

Affiliation:

1. Sugarcane Research Institute, National Key Laboratory for Tropical Crop Breeding, Yunnan Key Laboratory of Sugarcane Genetic Improvement, Yunnan Academy of Agricultural Sciences, Kuaiyuan 661699, China

2. Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China

Abstract

Sugarcane is a complex polyploid aneuploid cash crop, and transgenic varieties are important for molecular genetic and traditional breeding approaches. Herein, the sugarcane variety ROC22 served as the receptor, the Bar gene served as a screening marker, and positive and negative fragments of the ScD27.2 gene, upstream of strigolactones (SLs) biosynthesis genes driven by the 35S promoter, were introduced by Agrobacterium tumefaciens-mediated transformation. Regenerated plants were obtained by co-culture, screening culture, and differentiation induction, and 27 sense and antisense ScD27.2 transgenic seedlings were obtained by herbicide screening. PCR detection and 1% Basta (Glufosinate) application on leaves revealed Bar in all lines, with all testing positive for herbicide application and 23 containing the target gene (positive resistance screening rate = 87.5%). q-PCR and phenotypic analyses showed that ScD27.2 expression, plant height, tiller number, root length, stem diameter, and fresh weight were decreased in transgenic (ScD27.2R-9) compared with non-transgenic (NT and ScD27.2F-2) lines. ScD27.2 expression was downregulated, and growth potential was inhibited. Under 20% PEG treatment, malondialdehyde (MDA) content in ScD27.2R-9 was higher than in NT, while proline content was lower. Under drought stress, ScD27.2 expression, MDA levels, and proline content in ScD27.2F-2 and NT were higher than in non-treated controls, ScD27.2 expression increased with time, and MDA and proline levels also increased. ScD27.2 expression in ScD27.2R-9 decreased under 20% PEG treatment, MDA and proline increased (but not to NT levels), and growth was lower than NT. The 20% PEG treatment also increased the levels of (±)-2′-epi-5-deoxystrigol and (+)-abscisic acid in the rooting culture media of ScD27.2F-2, ScD27.2R-9, and NT lines, but the levels of (+)-abscisic acid content in ScD27.2R-9 was lower than in NT. Thus, interfering with ScD27.2 expression decreased resistance to 20% PEG treatment. ScD27.2 encodes a β-carotene isomerase involved in SLs biosynthesis that might function in sugarcane resistance to drought stress. It explains the role of SLs in sugarcane growth and development and responses to drought stress.

Funder

the National Natural Science Foundation of China

Technology Innovation talents in Yunnan Province

the National Modern Agriculture (Sugar crops) Industry Technology System of the Ministry of Finance and Ministry of Agriculture and Rural Affairs

Central Government Guiding Fund for Local Science and Technology Development

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3