Phytoremediation of Toxic Lead from Contaminated Soil Using Neyraudia reynaudiana: Soil of Xuzhou as a Case Study

Author:

Chen Fuyao12ORCID,Zhang Shaoliang3ORCID,Chen Zanxu2,Zhang Yuanyuan1,Cao Bo1

Affiliation:

1. Jiangsu Mineral Resources and Geological Design and Research Institute, China National Administration of Coal Geology, Xuzhou 221116, China

2. School of Public Policy & Management, China University of Mining and Technology, Xuzhou 221116, China

3. Research Center for Mine Ecological Restoration, Ministry of Education, China University of Mining and Technology, Xuzhou 221116, China

Abstract

Lead (Pb), as one of the main pollution elements, has resulted in large-scale soil pollution around the world. Even if phytoremediation can solve this problem, the selection of restoration potential plants has always been a scientific problem. As a multifunctional repair plant, Neyraudia reynaudiana can rehabilitate both polluted soils and slopes. N. reynaudiana has been widely used in terrain restoration in southern China before. This study was the first to study the growth and Pb absorption and enrichment capacity of N. reynaudiana in Xuzhou, north of the Yangtze River. In this study, N. reynaudiana was planted in soils with different lead concentrations, and the change of lead content in roots, shoots, and soils, as well as the redox enzyme, was tested and analyzed during each growth stage. The results showed that the roots could absorb Pb and transfer 79.45% to the shoots at most. With the growth of the plant, the ability to accumulate and transfer gradually increased. Moreover, when the soil Pb concentration was above 800 mg kg−1, the ability to accumulate by N. reynaudiana was significantly restrained. Furthermore, superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and peroxidase (POD) first acted on the redox response in the initial phase, while increasing the pollutant concentration or the growth of N. reynaudiana in the later stage, and the glutathione reductase (GR) redox system continued to feed back on the lead stress. This study proved that N. reynaudiana is a kind remediation plant for lead pollution soil and could repair soil with a lead pollution concentration lower than 800 mg kg−1. The results provide a theoretical reference for clarifying the action mechanism and threshold value of N. reynaudiana in rehabilitating soil lead pollution and provide practical guidance for the planting proportion of N. reynaudiana.

Funder

Open fund of Key Laboratory of Coal Measures Mineral Re-sources of China National Administration of Coal Geology

Science and Technology Innovation Foundation of Xuzhou city

Science and Technology Innovation Foundation of Jiangsu province

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3