Affiliation:
1. Jiangsu Mineral Resources and Geological Design and Research Institute, China National Administration of Coal Geology, Xuzhou 221116, China
2. School of Public Policy & Management, China University of Mining and Technology, Xuzhou 221116, China
3. Research Center for Mine Ecological Restoration, Ministry of Education, China University of Mining and Technology, Xuzhou 221116, China
Abstract
Lead (Pb), as one of the main pollution elements, has resulted in large-scale soil pollution around the world. Even if phytoremediation can solve this problem, the selection of restoration potential plants has always been a scientific problem. As a multifunctional repair plant, Neyraudia reynaudiana can rehabilitate both polluted soils and slopes. N. reynaudiana has been widely used in terrain restoration in southern China before. This study was the first to study the growth and Pb absorption and enrichment capacity of N. reynaudiana in Xuzhou, north of the Yangtze River. In this study, N. reynaudiana was planted in soils with different lead concentrations, and the change of lead content in roots, shoots, and soils, as well as the redox enzyme, was tested and analyzed during each growth stage. The results showed that the roots could absorb Pb and transfer 79.45% to the shoots at most. With the growth of the plant, the ability to accumulate and transfer gradually increased. Moreover, when the soil Pb concentration was above 800 mg kg−1, the ability to accumulate by N. reynaudiana was significantly restrained. Furthermore, superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and peroxidase (POD) first acted on the redox response in the initial phase, while increasing the pollutant concentration or the growth of N. reynaudiana in the later stage, and the glutathione reductase (GR) redox system continued to feed back on the lead stress. This study proved that N. reynaudiana is a kind remediation plant for lead pollution soil and could repair soil with a lead pollution concentration lower than 800 mg kg−1. The results provide a theoretical reference for clarifying the action mechanism and threshold value of N. reynaudiana in rehabilitating soil lead pollution and provide practical guidance for the planting proportion of N. reynaudiana.
Funder
Open fund of Key Laboratory of Coal Measures Mineral Re-sources of China National Administration of Coal Geology
Science and Technology Innovation Foundation of Xuzhou city
Science and Technology Innovation Foundation of Jiangsu province
National Natural Science Foundation of China
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献