Trace Metal Accumulation and Phytoremediation Potential of Four Crop Plants Cultivated on Pure Sewage Sludge

Author:

Salinitro Mirko,Montanari SofiaORCID,Simoni Andrea,Ciavatta ClaudioORCID,Tassoni AnnalisaORCID

Abstract

Phytoremediation is a viable strategy to remove trace metal contaminants from sewage sludge but still is poorly investigated. The aim of this study was to quantify the trace metal removal of B. napus, B. juncea, H. annuus, Z. mays grown on pure sewage sludge. Each species was grown on six different sewage sludge for 8 weeks and sludge were analysed for trace metal content and physico-chemical characteristics. Our results confirmed that all the tested sludge supported plant growth. The tested sludge showed a plant vigorousness lower (46% of sludge) or similar/increased (54% of sludge) compared to control treatment. B. juncea and B. napus were the most efficient species in the bioaccumulation, of trace metals. The average percentage of metals removed by the selected species was 0.2% for As, 0.85% for Cd, 0.09% for Cr, 0.36% for Cu, 0.36% for Ni, 4.2% for Se, 1.2% for Zn. In conclusion, our results showed that phytoremediation can be applied to sewage sludge, despite the chosen species have low efficiency in trace element removal. Further studies using hyperaccumulator species are needed which may lead to a higher efficiency of the process opening up new possibilities for the management strategies of this waste.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Reference49 articles.

1. General considerations on sludge disposal, industrial and municipal sludge;Grobelak,2019

2. Sanitary and environmental aspects of sewage sludge management;Rorat,2019

3. Comparison of changes in selected polycyclic aromatic hydrocarbons concentrations during the composting and anaerobic digestion processes of municipal waste and sewage sludge mixtures

4. Prokaryotic communities and potential pathogens in sewage sludge: Response to wastewaster origin, loading rate and treatment technology

5. Water: Sewage Sludge production and Disposal (Edition 2019)https://www.oecd-ilibrary.org/environment/data/oecd-environment-statistics/water-sewage-sludge-production-and-disposal-edition-2019_1900ef98-en

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3