Spectroscopic and Physicochemical Characterization of Poultry Waste-Based Composts and Charcoal–Compost Mixtures for the Prediction of Dry Matter Yield of Giant of Italy Parsley

Author:

Santos Francielly T.,Costa Mônica S. S. M.,Costa Luiz A. M.,Trindade HenriqueORCID,Tonial Larissa M. S.,Lorin Higor E. F.,Goufo PiebiepORCID

Abstract

Plant growing substrates obtained by composting agro-industrial waste can serve as organic soil amendments. However, it is crucial to determine the maturity and quality of organic amendments before their application to soil. This study aimed to evaluate the suitability of compost obtained from poultry wastes combined with five different vegetal residues (tree trimmings, sugarcane bagasse, sawdust, cotton residues, and Napier grass) as growth media for container-grown Giant of Italy parsley. Fourier-transform infrared and laser-induced fluorescence spectra were used to characterize the humification extent in composts before and after the addition of charcoal at five inclusion rates (0%, 15%, 30%, 45%, and 60%, weight basis). Spectroscopic measurements identified absorption bands between 1625 and 1448 cm−1 specific to each of the 25 organic amendments evaluated. The most suitable amendments (composts made from sawdust and sugarcane bagasse) were associated with O–H stretching of phenols and aromatic rings. Charcoal addition to composts changed some of their physical characteristics, leading to increased nutrient availability in some cases. Experimental and calculated dry matter yield were compared via multiple linear regression and simple non-linear regression as a function of the spectroscopic and physicochemical (N, P, K, pH, EC, C, HLIF, C:N, CEC, HA:HA) properties of the organic amendments. Regression models accurately assigned high yields to the sawdust- and bagasse-based composts and low yields to the Napier grass- and cotton-based composts. Electrical conductivity (EC) was the main factor limiting potted-parsley productivity, an indication that efficient management of charcoal rate and compost EC levels can aid in predicting parsley yield.

Funder

Fundação para a Ciência e Tecnologia

Coordenação de Aperfeicoamento de Pessoal de Nível Superior

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3