Seed Priming and Foliar Application of Nutrients Influence the Productivity of Relay Grass Pea (Lathyrus sativus L.) through Accelerating the Photosynthetically Active Radiation (PAR) Use Efficiency

Author:

Banerjee PurabiORCID,Venugopalan Visha KumariORCID,Nath Rajib,Chakraborty Prodip Kumar,Gaber AhmedORCID,Alsanie Walaa F.,Raafat Bassem M.,Hossain AkbarORCID

Abstract

The efficiency of a crop to intercept and utilize solar radiation for photosynthates production serves as one of the deciding factors of the productive potential of the crop stand. Interception and use efficiency of photosynthetically active radiation (PAR) were estimated in relay grass pea under different nutrient management schedules in consecutive two crop seasons of 2017–2018 and 2018–2019. Treatments were two levels of seed priming (i.e., 1. S1: Without seed priming and 2. S2: Seed priming with ammonium molybdate at 0.5 g kg−1 seed) and five levels of foliar-applied nutritions with various combinations of 2% Urea and 0.5% NPK (19:19:19) shuffling their times of application, replicated thrice laying out in a factorial randomized block design. Seed priming along with twice sprays of NPK (19:19:19) at pre-flowering followed by a second one after 15 days recorded maximum leaf area index (LAI) and total chlorophyll content augmenting greater interception and use efficiency of PAR with highest biomass accumulation, crop growth rate (CGR) and leaf nutrient contents leading to a significant increase in seed yield over control (1696.70 and 1182.00 kg ha−1, respectively) in a pooled analysis. LAI and total chlorophyll content established linear relationships with PAR interception explaining about 94 and 88% variations in intercepted PAR at 90 DAS. Intercepted PAR during different phenophases was positively correlated to dry matter accumulation and net photosynthetic rate with polynomial relationships. Seed yield of grass pea varied about 95 and 96% respectively during 2017–2018 and 2018–2019 with the variations in PAR interception at the pod developmental stage.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Reference73 articles.

1. Radiation interception, extinction coefficient and use efficiency of wheat crop at various irrigation and nitrogen levels in a semi-arid location

2. Impact of weather variables on dry matter accumulation and yield of mungbean [Vigna radiata (L.) Wilczek] varieties under different dates of sowing;Tzudir;Legume Res.,2016

3. Growth, Light Interception and Radiation use Efficiency Response of Pigeon pea (Cajanus cajan) to Planting Density in Southern Ethiopia

4. The Response of Lentil (Lens culinaris Medik.) to Soil Moisture and Heat Stress Under Different Dates of Sowing and Foliar Application of Micronutrients

5. Impact of PAR interception at different time points on total dry matter production in rice (Oryza sativa L.) crop transplanted on different dates;Basu;J. Food Agric. Environ.,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3