Spatiotemporal Deep Learning Model for Prediction of Taif Rose Phenotyping

Author:

Abdelmigid Hala M.ORCID,Baz MohammedORCID,AlZain Mohammed A.ORCID,Al-Amri Jehad F.,Zaini Hatim Ghazi,Abualnaja Matokah,Morsi Maissa M.,Alhumaidi Afnan

Abstract

Despite being an important economic component of Taif region and the Kingdom of Saudi Arabia (KSA) as a whole, Taif rose experiences challenges because of uncontrolled conditions. In this study, we developed a phenotyping prediction model using deep learning (DL) that used simple and accurate methods to obtain and analyze data collected from ten rose farms. To maintain broad applicability and minimize computational complexity, our model utilizes a complementary learning approach in which both spatial and temporal instances of each dataset are processed simultaneously using three state-of-the-art deep neural networks: (1) convolutional neural network (CNN) to treat the image, (2) long short-term memory (LSTM) to treat the timeseries and (3) fully connected multilayer perceptions (MLPs)to obtain the phenotypes. As a result, this approach not only consolidates the knowledge gained from processing the same data from different perspectives, but it also leverages on the predictability of the model under incomplete or noisy datasets. An extensive evaluation of the validity of the proposed model has been conducted by comparing its outcomes with comprehensive phenotyping measurements taken from real farms. This evaluation demonstrates the ability of the proposed model to achieve zero mean absolute percentage error (MAPE) and mean square percentage error (MSPE) within a small number of epochs and under different training to testing schemes.

Funder

Ministry of Education

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3