Physiological and Biochemical Responses of Maize to Elevated CO2 Concentrations: Implications for Growth and Metabolism

Author:

Khan Pirzada1,Safiul Azam Fardous Mohammad1ORCID,Lian Tong1ORCID,Abdelbacki Ashraf M. M.2,Albaqami Mohammed3ORCID,Jan Rahmatullah4ORCID,Kim Kyung-Min4ORCID,Wang Weixuan1

Affiliation:

1. Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China

2. Deanship of Skills Development, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia

3. Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia

4. Department of Applied Biosciences, Graduate School, Kyungpook National University, Daegu 41566, Republic of Korea

Abstract

Rising atmospheric CO2 levels, a significant consequence of anthropogenic activities, profoundly impact global agriculture and food security by altering plant physiological processes. Despite extensive research, a comprehensive understanding of the specific effects of elevated CO2 on maize (Zea mays L.)’s primary and secondary metabolism remains elusive. This study investigated the responses of maize seedlings cultivated in open-top chambers (OTCs) under three CO2 concentrations: ambient (380 ppm), elevated (600 ppm), and high (1800 ppm). Key growth parameters, including plant height, leaf area, and aboveground biomass (leaf and stem), were assessed alongside metabolic profiles encompassing nonstructural and structural carbohydrates, syringyl (S) and guaiacyl lignin, the syringyl-to-guaiacyl (S/G)-lignin ratio, photosynthetic pigments, total soluble protein, and malondialdehyde (MDA) levels. The results demonstrated that exposure to 600 ppm CO2 significantly enhanced plant height, leaf area, and aboveground biomass compared to ambient conditions. Concurrently, there were notable increases in the concentrations of primary metabolites. In contrast, exposure to 1800 ppm CO2 severely inhibited these growth parameters and induced reductions in secondary metabolites, such as chlorophyll and soluble proteins, throughout the growth stages. The findings underscore the intricate responses of maize metabolism to varying CO2 levels, highlighting adaptive strategies in primary and secondary metabolism under changing atmospheric conditions. This research contributes to a nuanced understanding of maize’s physiological adaptations to future climate scenarios characterized by elevated CO2, with implications for sustainable agriculture and food security.

Funder

Central Public-interest Scientific Institution Basal Research Fund

Cooperative Research Program for Agriculture Science and Technology Development

King Saud University, Riyadh, Saudi Arabia

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3