Individual and Interactive Ecophysiological Effect of Temperature, Watering Regime and Abscisic Acid on the Growth and Development of Tomato Seedlings

Author:

Al-Deeb Taghleb1ORCID,Abo Gamar Mohammad2,Khaleel Sabah1ORCID,Al-Ghzawi Abdul Latief3,Al Khateeb Wesam2,Jawarneh Mohammad2ORCID,Jahmani Mohammad Y.2,Al-Zoubi Omar4,Habeeb Talaat4

Affiliation:

1. Department of Biological Sciences, Faculty of Science, Al al-Bayt University, Mafraq 25113, Jordan

2. Department of Biological Sciences, Faculty of Science, Yarmouk University, Irbid 21163, Jordan

3. Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa 13133, Jordan

4. Biology Department, Faculty of Science at Yanbu, Taibah University, Yanbu El-Bahr 46423, Saudi Arabia

Abstract

Climate change is a major concern to people all over the world. Most studies have considered singular or dual effects of climate change implications on plant growth and development; however, the combination of multiple factors has received little attention. We therefore studied the single and combined effects of two environmental stress factors (high temperature and water stresses) and abscisic acid on tomato seedlings (Solanum lycoperscum L.). Plants were grown in controlled environment growth chambers under two temperatures (22/18 °C or 28/24 °C; 16 h light/8 h dark), two watering regimes (well-watered or water-stressed), and two abscisic acid treatments (0 and 100 µL of 1mM abscisic acid solution, every other day). Plants were placed under experimental conditions for a total of 33 days, including a 13-day period of initial growth and hardening. Morphological, biochemical, and physiological parameters were measured to assess the growth and development of plants in response to the three factors. ANOVA and Scheffé’s multiple-comparison procedures were used to establish significant differences among treatments and among the three factors being manipulated. All three factors decreased plant height and growth rate. Dry mass accumulation was negatively affected by high temperatures. Transpiration, stomatal conductance, and gas exchange parameters were negatively affected by all three factors; additionally, net carbon dioxide assimilation was reduced by water stress and abscisic acid application. Non-photochemical quenching was decreased in plants grown under higher temperature and in abscisic acid-treated plants. Though it was not significant, abscisic acid appears to mitigate the negative effect of higher temperature and water stress on the nitrogen balance index and total chlorophyll content.

Funder

Yarmouk University

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3