Comparative Transcriptional Analysis of Two Contrasting Rice Genotypes in Response to Salt Stress

Author:

Ye Xiaoxue,Tie Weiwei,Xu Jianlong,Ding Zehong,Hu Wei

Abstract

Improving rice salt-tolerance is an effective way to deal with the increasing food demand caused by soil salinization and population growth. Nevertheless, the molecular mechanisms of rice salt-tolerance remain elusive. In this study, comparative transcriptomic analyses were performed to identify salt-tolerance genes that were either specifically regulated or more changed in salt-tolerant cultivar FL478 relative to salt-sensitive cultivar 93-11. In total, 1423, 175, and 224 salt-tolerance genes were identified under 200 mM NaCl treatment for 6 h, 24 h, and 72 h, respectively. These genes were commonly enriched in transport and peroxidase/oxidoreductase activity across all timepoints, but specially enriched in transcription regulator activity at 6 h under salt stress. Further analysis revealed that 53 transporters, 38 transcription factors (TFs), and 23 reactive oxygen species (ROS) scavenging enzymes were involved in salt adaptation of FL478, and that overall, these salt-tolerance genes showed a faster transcriptional expression response in FL478 than in 93-11. Finally, a gene co-expression network was constructed to highlight the regulatory relationships of transporters, TFs, and ROS scavenging genes under salt-stress conditions. This work provides an overview of genome-wide transcriptional analysis of two contrasting rice genotypes in response to salt stress. These findings imply a crucial contribution of quickly transcriptional changes to salt tolerance and provide useful genes for genetic improvement of salt tolerance in rice.

Funder

the 2020 Research Program of Sanya Yazhou Bay Science and Technology City

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3