The Correct Cover Crop Species Integrated with Slurry Can Increase Biomass, Quality and Nitrogen Cycling to Positively Affect Yields in a Subsequent Spring Barley Rotation

Author:

Cottney PaulORCID,Black Lisa,White Ethel,N. Williams PaulORCID

Abstract

The aim of this study is to identify species of cover crops that cause an increase in biomass and total nutrient accumulation in response to manure/slurry. This could improve nutrient efficiency and intensify the benefits from over-winter cover crops in arable rotations and improve following commercial crop yields. In a pot experiment, sixteen cover crops were grown for 100 days in response to slurry. Growth and nutrient (N, P, K, Mg and S) accumulation were measured, and then residue was reincorporated into the soil with spring barley (Hodeum vulgare L.) sown and harvested for yield. In response to slurry, tillage radish (Raphanus sativus L.) increased N accumulation by 101% due to a significant increase in biomass and % N (p < 0.05) over its relative control plots. Significant interactions between species and the application of slurry were found in cover crop biomass, cover crop and spring barley nutrient uptake, as well as cover crop carbon accumulation, particularly in the brassica species used. Slurry integrated with cover crops both reduced the cover crop C:N ratio and enhanced nutrient cycling compared to the control when soil mineral nitrogen (SMN) and spring barley crop N offtake were pooled. However, this was not observed in the legumes. This study shows that slurry integration with cover crops is a promising sustainable farming practice to sequester N and other macro-nutrients whilst providing a range of synergistic benefits to spring barley production when compared to unplanted/fallow land rotations. However, this advantage is subject to use of responsive cover crop species identified in this study.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Reference84 articles.

1. Global Soil Partnershiphttp://www.fao.org/global-soil-partnership/about/why-the-partnership/en/

2. Growth and weed suppression ability of common and new cover crops in Germany

3. Cover crop crucifer-legume mixtures provide effective nitrate catch crop and nitrogen green manure ecosystem services

4. Biofumigation for Control of Pale Potato Cyst Nematodes: Activity of Brassica Leaf Extracts and Green Manures on Globodera pallida in Vitro and in Soil

5. A Review of the Benefits, Optimal Crop Management Practices and Knowledge Gaps Associated with Different Cover Crop Species;White,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3