Change Characteristics of Soil Erodibility during Natural Restoration in an Earthquake Landslide of Southwestern China

Author:

Zheng Jiangkun1ORCID,Yan Junxia2,Chen Qiyang1,Hu Wangyang1,Zhao Peng1,Hou Guirong1,Wang Yong1ORCID

Affiliation:

1. National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, Sichuan Province Key Laboratory of Ecological Forestry Engineering on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China

2. Department of Geography, Handan University, Handan 056005, China

Abstract

Landslides caused by earthquakes bring about dramatic changes in soil erodibility. In order to understand the change characteristics of soil erodibility during a vegetation restoration period after the 5.12 Wenchuan earthquake, a non-landslide area, landslide area, and transition area in Leigu Town, Beichuan County were selected as research areas. Field soil sampling, geostatistics, and spatial interpolation were used to explore the spatiotemporal changes in soil physicochemical properties and soil erodibility during a natural restoration in 2013 (5 years after the earthquake) and in 2022 (14 years after the earthquake). The results showed that the comprehensive soil erodibility index (CSEI) was mainly composed of five soil factors, which were soil pH, soil total nitrogen (TN), mean weight diameter of soil aggregates (MWD), fractal dimension of soil water stable aggregates (D), and soil erodibility (Kepic). The CSEI of the landslide area was slightly lower than that of the non-landslide area. The CSEI was gradually increasing during the process of natural restoration after earthquake. From 2013 to 2022, the increase rates of the CSEI were 6.9%, 10.0%, and 41.5% for the landslide area, non-landslide area, and transition area, respectively. Along attitude segments, the spatial distribution of soil erodibility in 2022 is more uniform than that in 2013. The higher value of CSEI was located in the upper part of research areas. The spatial distribution of the CSEI in 2013 and 2022 appeared as a moderate autocorrelation. The variable ranges of CSEI in 2013 and 2022 were about 20 m. In the early stage of vegetation restoration, soil and water conservation engineering was recommended in the landslide area.

Funder

National Natural Science Foundation of China

Science and Technology Planning Project of Sichuan Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3