Evaluating the Performance of Sentinel-2, Landsat 8 and Pléiades-1 in Mapping Mangrove Extent and Species

Author:

Wang DezhiORCID,Wan Bo,Qiu Penghua,Su Yanjun,Guo Qinghua,Wang Run,Sun Fei,Wu Xincai

Abstract

Mapping mangrove extent and species is important for understanding their response to environmental changes and for observing their integrity for providing goods and services. However, accurately mapping mangrove extent and species are ongoing challenges in remote sensing. The newly-launched and freely-available Sentinel-2 (S2) sensor offers a new opportunity for these challenges. This study presents the first study dedicated to the examination of the potential of original bands, spectral indices, and texture information of S2 in mapping mangrove extent and species in the first National Nature Reserve for mangroves in Dongzhaigang, China. To map mangrove extent and species, a three-level hierarchical structure based on the spatial structure of a mangrove ecosystem and geographic object-based image analysis is utilized and modified. During the experiments, to conquer the challenge of optimizing high-dimension and correlated feature space, the recursive feature elimination (RFE) algorithm is introduced. Finally, the selected features from RFE are employed in mangrove species discriminations, based on a random forest algorithm. The results are compared with those of Landsat 8 (L8) and Pléiades-1 (P1) data and show that S2 and L8 could accurately extract mangrove extent, but P1 obviously overestimated it. Regarding mangrove species community levels, the overall classification accuracy of S2 is 70.95%, which is lower than P1 imagery (78.57%) and slightly higher than L8 data (68.57%). Meanwhile, the former difference is statistically significant, and the latter is not. The dominant species is extracted basically in S2 and P1 imagery, but for the occasionally distributed K. candel and the pioneer and fringe mangrove A. marina, S2 performs poorly. Concerning L8, S2, and P1, there are eight (8/126), nine (9/218), and eight (8/73) features, respectively, that are the most important for mangrove species discriminations. The most important feature overall is the red-edge bands, followed by shortwave infrared, near infrared, blue, and other visible bands in turn. This study demonstrates that the S2 sensor can accurately map mangrove extent and basically discriminate mangrove species communities, but for the latter, one should be cautious due to the complexity of mangrove species.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3