Extracting Building Boundaries from High Resolution Optical Images and LiDAR Data by Integrating the Convolutional Neural Network and the Active Contour Model

Author:

Sun Ying,Zhang Xinchang,Zhao Xiaoyang,Xin QinchuanORCID

Abstract

Identifying and extracting building boundaries from remote sensing data has been one of the hot topics in photogrammetry for decades. The active contour model (ACM) is a robust segmentation method that has been widely used in building boundary extraction, but which often results in biased building boundary extraction due to tree and background mixtures. Although the classification methods can improve this efficiently by separating buildings from other objects, there are often ineluctable salt and pepper artifacts. In this paper, we combine the robust classification convolutional neural networks (CNN) and ACM to overcome the current limitations in algorithms for building boundary extraction. We conduct two types of experiments: the first integrates ACM into the CNN construction progress, whereas the second starts building footprint detection with a CNN and then uses ACM for post processing. Three level assessments conducted demonstrate that the proposed methods could efficiently extract building boundaries in five test scenes from two datasets. The achieved mean accuracies in terms of the F1 score for the first type (and the second type) of the experiment are 96.43 ± 3.34% (95.68 ± 3.22%), 88.60 ± 3.99% (89.06 ± 3.96%), and 91.62 ±1.61% (91.47 ± 2.58%) at the scene, object, and pixel levels, respectively. The combined CNN and ACM solutions were shown to be effective at extracting building boundaries from high-resolution optical images and LiDAR data.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 57 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3