Remote Sensing Approach to Detect Burn Severity Risk Zones in Palo Verde National Park, Costa Rica

Author:

Rozario Papia,Madurapperuma Buddhika,Wang Yijun

Abstract

This study develops a site specific burn severity modelling using remote sensing techniques to develop severity patterns on vegetation and soil in the fire prone region of the Palo Verde National Park in Guanacaste, Costa Rica. Terrain physical features, soil cover, and scorched vegetation characteristics were examined to develop a fire risk model and to quantify probable burned areas. Spectral signatures of affected areas were captured through multi-spectral analysis; i.e., Normalized Burn Ratio (NBR), Landsat derived differenced Normalized Burn Ratio (dNBR) and relativized dNBR (RdNBR). A partial unmixing algorithm, Mixture Tuned Matched Filtering (MTMF) was used to isolate endmembers for scorched vegetation and soil. The performance of dNBR and RdNBR for predicting ground cover components was acceptable with an overall accuracy of 84.4% and Cohen’s Kappa 0.82 for dNBR and an overall accuracy of 89.4% and Cohen’s Kappa 0.82 for RdNBR. Landsat derived RdNBR showed a strong correlation with scorched vegetation (r2 = 0.76) and moderate correlation with soil cover (r2 = 0.53), which outperformed dNBR. The ecologically diverse and unique park area is threatened by wetland fires, which pose a potential threat to various species. Human induced fires by poachers are a common occurrence in such areas to gain access to these species. This paper aims to prioritize areas that are at a higher risk from fire and model spatial adaptations in relation to the direction of fire within the affected wetlands. This assessment will help wildlife personnel in managing disturbed wetland ecosystems.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3