DEM Generation from Multi Satellite PlanetScope Imagery

Author:

Ghuffar Sajid

Abstract

Planet Labs have recently launched a large constellation of small satellites (3U cubesats) capable of imaging the whole Earth landmass everyday. These small satellites capture multiple images of an area on consecutive days or sometimes on the same day with a spatial resolution of 3–4 m. Planet Labs endeavors to operate the constellation in a nadir pointing mode, however, the view angle of these satellites currently varies within a few degrees from the nadir leading to varying B/H ratio for overlapping image pairs. Due to relatively small scene footprint and small off-nadir angle, the baseline to height ratio (B/H) of the overlapping PlanetScope images is often less than 1:10, which is not ideal for 3D reconstruction. Therefore, this paper explores the potential of Digital Elevation Model generation from this multi-date, multi-satellite PlanetScope imagery. The DEM generation from multiple PlanetScope images is achieved using a volumetric stereo reconstruction technique, which applies semi global matching in georeferenced object space. The results are evaluated using a LiDAR based DEM (5 m) over Mount Teide (3718 m) in Canary Islands and the ALOS (30 m) DEM on rugged terrain of the Nanga Parbat massif (8126 m) in the western Himalaya range. The proposed methodology is then applied on images from two PlanetScope satellites overpasses within a couple of minutes difference to compute the DEM of the Khurdopin glacier in the Karakoram range, known for its recent surge. The quantitative assessment of the generated elevation models is done by comparing statistics of the elevation differences between the reference LiDAR and ALOS DEM and the PlanetScope DEM. The Normalized Median of Absolute Deviation (NMAD) of the elevation differences between the computed PlanetScope DEM and LiDAR DEM is 4.1 m and the elevation differences for the ALOS DEM over stable terrain is 3.9 m. The results show that PlanetScope imagery can lead to sufficient quality DEM even with a small baseline to height ratio. Therefore, the daily PlanetScope imagery is a valuable data source and the DEM generated from this imagery can potentially be employed in numerous applications requiring multi temporal DEMs.

Funder

International Foundation for Science

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3