Exploring the Inclusion of Small Regenerating Trees to Improve Above-Ground Forest Biomass Estimation Using Geospatial Data

Author:

Le Anh,Paull David,Griffin Amy

Abstract

Research on the contribution of understory components to the total above ground biomass (AGB) has to date received very little attention because most prior biomass estimation studies have ignored small regenerating trees beneath the main canopy with the assumption that their contribution to biomass is generally negligible. Only a few biomass studies have emphasized a considerable contribution to biomass of understory components in forest ecosystems. However, this study of native, tropical, deciduous forest biomass in the Central Highlands of Vietnam was able to explore the contribution of small regenerating trees to total biomass by exploiting a large field inventory of hundreds to thousands of individually-counted small regenerating trees per hectare. Thus, this study investigated the influence of small regenerating tree biomass on models of the relationship between total AGB and remote sensing data. These analyses were trained with and without topographic variables derived from ASTER-GDEM. Our results demonstrate that the inclusion of small regenerating understory trees (R2 = 0.42, NRMSE or %RMSE = 30.5%) provides a quantifiable improvement in total estimated AGB compared to using only large woody canopy trees (R2 = 0.21, NRMSE or %RMSE = 36.6%) when correlating field-based biomass measurements with optical image-derived variables. All analyses show that the inclusion of terrain factors made an important contribution to biomass modeling. This study suggests that for young, open forests where there are many small regenerating trees, the contribution of understory biomass should be taken into consideration to improve total AGB estimation.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3