A Super-Resolution and Fusion Approach to Enhancing Hyperspectral Images

Author:

Kwan Chiman,Choi Joon,Chan Stanley,Zhou Jin,Budavari Bence

Abstract

High resolution (HR) hyperspectral (HS) images have found widespread applications in terrestrial remote sensing applications, including vegetation monitoring, military surveillance and reconnaissance, fire damage assessment, and many others. They also find applications in planetary missions such as Mars surface characterization. However, resolutions of most HS imagers are limited to tens of meters. Existing resolution enhancement techniques either require additional multispectral (MS) band images or use a panchromatic (pan) band image. The former poses hardware challenges, whereas the latter may have limited performance. In this paper, we present a new resolution enhancement algorithm for HS images that only requires an HR color image and a low resolution (LR) HS image cube. Our approach integrates two newly developed techniques: (1) A hybrid color mapping (HCM) algorithm, and (2) A Plug-and-Play algorithm for single image super-resolution. Comprehensive experiments (objective (five performance metrics), subjective (synthesized fused images in multiple spectral ranges), and pixel clustering) using real HS images and comparative studies with 20 representative algorithms in the literature were conducted to validate and evaluate the proposed method. Results demonstrated that the new algorithm is very promising.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference46 articles.

Cited by 72 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3