Abstract
This paper proposes a method for examining chaotic structures in semiconductor or alloy voltage oscillation time-series, and focuses on the case of the TlInTe2 semiconductor. The available voltage time-series are characterized by instabilities in negative differential resistance in the current–voltage characteristic region, and are primarily chaotic in nature. The analysis uses a complex network analysis of the time-series and applies the visibility graph algorithm to transform the available time-series into a graph so that the topological properties of the graph can be studied instead of the source time-series. The results reveal a hybrid lattice-like configuration and a major hierarchical structure corresponding to scale-free characteristics in the topology of the visibility graph, which is in accordance with the default hybrid chaotic and semi-periodic structure of the time-series. A novel conceptualization of community detection based on modularity optimization is applied to the available time-series and reveals two major communities that are able to be related to the pair-wise attractor of the voltage oscillations’ phase portrait of the TlInTe2 time-series. Additionally, the network analysis reveals which network measures are more able to preserve the chaotic properties of the source time-series. This analysis reveals metric information that is able to supplement the qualitative phase-space information. Overall, this paper proposes a complex network analysis of the time-series as a method for dealing with the complexity of semiconductor and alloy physics.
Subject
General Earth and Planetary Sciences,General Environmental Science
Reference45 articles.
1. Electrostatic force microscopy: principles and some applications to semiconductors
2. Fundamentals of Semiconductors;Cardona,2005
3. Solid State and Semiconductor Physics;McKelvey,2018
4. The Electrical Properties of Metals and Alloys;Dugdale,2016
5. Encounter with Chaos: Self-organized Hierarchical Complexity in Semiconductor Experiments;Peinke,2012