Performance Assessment and Optimization of the Ultra-High Speed Air Compressor in Hydrogen Fuel Cell Vehicles

Author:

Shi Ting1,Peng Xueyuan12ORCID

Affiliation:

1. School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China

2. State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China

Abstract

Air compressors in hydrogen fuel cell vehicles play a crucial role in ensuring the stability of the cathode air system. However, they currently face challenges related to low efficiency and poor stability. To address these issues, the experimental setup for the pneumatic performance of air compressors is established. The effects of operational parameters on energy consumption, efficiency, and mass flow rate of the air compressor are revealed based on a Morris global sensitivity analysis. Considering a higher flow rate, larger efficiency, and lower energy consumption simultaneously, the optimal operating combination of the air compressor is determined based on grey relational multi-objective optimization. The optimal combination of operational parameters consisted of a speed of 80,000 rpm, a pressure ratio of 1.8, and an inlet temperature of 18.3 °C. Compared to the average values, the isentropic efficiency achieved a 48.23% increase, and the mass flow rate rose by 78.88% under the optimal operational combination. These findings hold significant value in guiding the efficient and stable operation of air compressors. The comprehensive methodology employed in this study is applicable further to investigate air compressors for hydrogen fuel cell vehicles.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3