Modeling a Hydraulically Powered Flight Control Actuation System

Author:

Iyaghigba Samuel David1ORCID,Petrunin Ivan2ORCID,Avdelidis Nicolas P.1ORCID

Affiliation:

1. Integrated Vehicle Health Management Centre, School of Aerospace, Transport, and Manufacturing, Cranfield University, Bedfordshire MK43 0AL, UK

2. Centre for Autonomous and Cyberphysical Systems, Cranfield University, Bedfordshire MK43 0AL, UK

Abstract

Many different types of aircraft designs have flight control systems (FCS) powered by hydraulic systems. With respect to the torques, moments, surface areas, and opposing forces to be acted upon, components introduce faults into the hydraulic system when these components are aging or degrading. The diagnostics of a hydraulically powered flight control actuation system (HPFCAS) rely on the faults produced within the subsystem components as well as the entire system’s mechanism itself. In this paper, a model for an HPFCAS is developed to analyze faults where the HPFCAS was approached as a system of systems (SOS). The identified faults were injected into the system. It is established that some of the faults from the different subsystems had similar characteristic effects and were propagated with attendant consequences. For instance, a measured decrease in the pressure value is observed because of the decrease in the pump speed. A similar characteristic is observed if there is leakage on the line or if there is a clogging valve. These form complex integrated responses in determining where the fault is coming from if only one component is analyzed since it involves components serving different subsystems. Results show that only models that can describe the real characteristics or attributes of the specific systems, due to their defined components, are sufficient for effective diagnostics. This is because the data obtained are more accurate at predicting the behavior of components.

Funder

TETFund Academic Staff Training and Development (AST&D) Nigeria

the Air Force Institute of Technology (AFIT) Kaduna and IVHM Centre

Cranfield University, UK

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3