Recognizing Textual Inference in Mongolian Bar Exam Questions

Author:

Khaltarkhuu Garmaabazar1ORCID,Batjargal Biligsaikhan2ORCID,Maeda Akira3ORCID

Affiliation:

1. Graduate School of Information Science and Engineering, Ritsumeikan University, Kusatsu 525-8577, Shiga, Japan

2. Research Organization of Science and Technology, Ritsumeikan University, Kusatsu 525-8577, Shiga, Japan

3. College of Information Science and Engineering, Ritsumeikan University, Kusatsu 525-8577, Shiga, Japan

Abstract

This paper examines how to apply deep learning techniques to Mongolian bar exam questions. Several approaches that utilize eight different fine-tuned transformer models were demonstrated for recognizing textual inference in Mongolian bar exam questions. Among eight different models, the fine-tuned bert-base-multilingual-cased obtained the best accuracy of 0.7619. The fine-tuned bert-base-multilingual-cased was capable of recognizing “contradiction”, with a recall of 0.7857 and an F1 score of 0.7674; it recognized “entailment” with a precision of 0.7750, a recall of 0.7381, and an F1 score of 0.7561. Moreover, the fine-tuned bert-large-mongolian-uncased showed balanced performance in recognizing textual inference in Mongolian bar exam questions, thus achieving a precision of 0.7561, a recall of 0.7381, and an F1 score of 0.7470 for recognizing “contradiction”.

Funder

JSPS KAKENHI

Publisher

MDPI AG

Reference78 articles.

1. (2024, January 09). World Development Indicators. Available online: https://databank.worldbank.org/source/world-development-indicators.

2. (2024, January 09). Mid-Term Evaluation’s Discussion of the Medium-Term Action Plan “New Development”. Available online: https://parliament.mn/n/gico.

3. Shagdarsuren, T. (2001). Study of Mongolian Scripts (Graphic Study of Grammatology, Urlakh Erdem Khevleliin Gazar. [2nd ed.].

4. Svantesson, J., Tsendina, A., Karlsson, A., and Franzén, V. (2005). The phonology of Mongolian, Oxford University Press. [1st ed.].

5. Advances in natural language processing;Hirschberg;Science,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3