A Hybrid Control Path Planning Architecture Based on Traffic Equilibrium Assignment for Emergency

Author:

Zhao Zilin1ORCID,Cai Zhi1,Chang Mengmeng2,Ding Zhiming3

Affiliation:

1. Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China

2. College of Computer and Information Engineering, Henan Normal University, Xinxiang 453007, China

3. The Institute of Software, Chinese Academy of Sciences, Beijing 100190, China

Abstract

Unconventional events exacerbate the imbalance between regional transportation demand and limited road network resources. Scientific and efficient path planning serves as the foundation for rapidly restoring equilibrium to the road network. In real large-scale road networks, especially during emergencies, it is usually difficult to obtain or predict accurate dynamic traffic network flows in real-time, which is used to support equilibrium path planning. Moreover, the traditional iterative methods cannot meet the real-time demand of emergency equilibrium path planning decision generation. To solve the above problems, this paper proposes a hybrid control architecture for path planning based on equilibrium traffic assignment theory. The architecture introduces the travelers’ real-time travel data and constructs a spatio-temporal neural network, which captures the evolution of traffic network loads. Adaptive multi-graph fusion technology is used to mix the background traffic flow data and the traveler’s real-time Origin–Destination (OD) data, to mine the dynamic correlation between the traffic state and the travelers’ travel. Based on the real-time prediction of dynamic network states, equilibrium mapping learning is carried out to pre-allocate potential travel demands and construct equilibrium traffic graphs based on system optimization traffic assignment. Finally, individual evacuation path strategies are generated online in a data-driven manner in real time to achieve improved resilience in the transportation system.

Funder

National Key R & D Program of China

Key R & D Program of Shandong Province

National Natural Science of Foundation of China

Beijing Natural Science Foundation

Humanities and Social Sciences Foundation of the Ministry of Education

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3