A Simple Unsupervised Knowledge-Free Domain Adaptation for Speaker Recognition

Author:

Lin Wan12,Li Lantian3,Wang Dong1

Affiliation:

1. Center for Speech and Language Technologies, BNRist, Tsinghua University, Beijing 100084, China

2. College of Management, Shenzhen University, Shenzhen 518055, China

3. School of Artificial Intelligence, Beijing University of Post Telecommunications, Beijing 100876, China

Abstract

Despite the great success of speaker recognition models based on deep neural networks, deploying a pre-trained model in real-world scenarios often leads to significant performance degradation due to the domain mismatch between training and testing conditions. Various adaptation methods have been developed to address this issue by modifying either the front-end embedding network or the back-end scoring model. However, existing methods typically rely on knowledge of the network, scoring model, or even the source data. In this study, we introduce a knowledge-free adaptation approach that only necessitates the unlabeled target data. Our core concept is based on the assumption that domain mismatch primarily stems from distributional distortion in the embedding space, such as shifting, rotation, and scaling while maintaining inter-speaker discrimination for data from unknown domains. Building on this assumption, we propose clustering LDA (C-LDA), a full-rank linear discriminant analysis (LDA) based on agglomerative hierarchical clustering (AHC) to compensate for this distortion. This approach does not need any human labels and does not rely on any knowledge of the model in the source domain, making it suitable for real-world applications. Theoretical analysis indicates that with cosine scoring, C-LDA is capable of eliminating distributional distortion related to global shift and within-speaker covariance rotation and scaling. Surprisingly, our experiments demonstrated that this simple approach can outperform more complex methods that require full or partial knowledge, including front-end approaches such as fine-tuning and distribution alignment, and back-end approaches such as unsupervised probabilistic linear discriminant analysis (PLDA) adaptation. Additional experiments demonstrated that C-LDA is insensitive to hyperparameters and works well in both multi-domain and single-domain adaptation scenarios.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3