Temperature Effects on the Natural Frequencies of Composite Girders

Author:

Poudel Arjun1ORCID,Kim Seungwon1,Cho Byoung Hooi2ORCID,Kim Janghwan1ORCID

Affiliation:

1. Department of Civil Engineering, Kangwon National University, Samcheock 25913, Republic of Korea

2. Department of Civil Engineering, Sangmyung University, Cheonan 31066, Republic of Korea

Abstract

Composite bridges are typically exposed to temperature variations due to heat radiation, conduction, and convection. Temperature affects the modal parameters of bridges, hindering the application of damage detection methods based on the dynamic properties of bridges. In this study, the effects of temperature on the natural frequencies of composite bridges were investigated experimentally and numerically to derive a basis for separating temperature effects from the natural frequencies. A temperature-controllable girder specimen was developed for modal testing. Additionally, finite element (FE) analysis was conducted to analyze the effects of temperature. The FE analysis results were validated by comparing them to the static response results of the test specimen. The results of the experiments and FE simulations verified that temperature variation can affect the material properties, particularly the modulus of elasticity, of a composite girder, consequently influencing its natural frequency. Based on the tests and simulations, a linear relationship between the temperature and the natural frequency was proposed to remove the temperature effects from the natural frequency.

Funder

Ministry of Education

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3