Deploying IIoT Systems for Long-Term Planning in Underground Mining: A Focus on the Monitoring of Explosive Atmospheres

Author:

Medina Fabian1ORCID,Ruiz Hugo2,Espíndola Jorge1ORCID,Avendaño Eduardo3ORCID

Affiliation:

1. Department of Computer Engineering, Universidad Pedagógica y Tecnológica de Colombia, Tunja 150003, Colombia

2. Department of Industrial Engineering, Universidad Pedagógica y Tecnológica de Colombia, Tunja 150003, Colombia

3. Department of Electronic Engineering, Universidad Pedagógica y Tecnológica de Colombia, Tunja 150003, Colombia

Abstract

This paper presents a novel methodology for deploying wireless sensor nodes in the Industrial Internet of Things (IIoT) to address the safety and efficiency challenges in underground coal mining. The methodology is intended to support long-term planning on mitigating the risks in occupational health and safety policies. To ensure realistic and accurate deployment, we propose a software tool that generates mine models based on geolocation data or blueprints in image format, allowing precise adaptation to the specific conditions of each mine. Furthermore, the process is based on sensing and communication range values obtained through simulations and on-site experiments. The deployment strategy is articulated in two complementary steps: a deterministic deployment, where nodes are strategically placed according to the structure of the tunnels, followed by a random stage to include additional nodes that ensure optimal coverage and connectivity inside the mine by comparing different methodologies for deploying sensor networks using coverage density as a performance metric. We analyze coverage and connectivity based on the three probability density functions (PDFs) for the random deployment of nodes: uniform, normal, and exponential, evaluating both the degree of coverage (k-coverage) and the degree of connectivity (k-connectivity). The results show that our proposed methodology stands out for its lower density of sensors per square meter, which translates into a reduction of between 20.81% and 23.46% for uniform and exponential PDFs, respectively, concerning the number of sensors compared to the analyzed methodologies. In this way, it is possible to determine which distribution is suitable to cover the elongated area with the smallest number of nodes, considering the coverage and connectivity requirements, to reduce the deployment cost. The uniform PDF minimizes the number of sensors needed by 44.70% in small mines and 46.27% in medium ones compared to the exponential PDF. These findings provide valuable information to optimize node deployment regarding cost and efficiency; a uniform function is a good option depending on prices. The exponential distribution reached the highest values of k-coverage and k-connectivity for small and medium-sized mines; in addition, it has greater robustness and tolerance to faults like signal network intermittence. This methodology not only improves the collection of critical information for the mining operation but also plays a vital role in reducing the risks to the health and safety of workers by providing a more robust and adaptive monitoring system. The approach can be used to plan IIoT systems based on Wireless Sensor Networks (WSN) for underground mining exploitation, offering a more reliable and adaptable strategy for monitoring and managing complex work environments.

Publisher

MDPI AG

Reference52 articles.

1. United Nations (September, January 26). Report of the World Summit on Sustainable Development. Proceedings of the A/CONF.199/20, Johannesburg, South Africa.

2. Walser, G. (2002). Economic Impact of World Mining (IAEA-SM-362), International Atomic Energy Agency.

3. International Energy Agency (2020). Coal Information Overview, International Energy Agency.

4. British Petroleum (2019). BP Statistical Review of World Energy, British Petroleum.

5. (2020, June 01). Agencia Nacional de Minería Carbón, Available online: https://www.anm.gov.co/sites/default/files/ficha_carbon_es.pdf.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3