Numerical Simulation Research on Aerodynamic Characteristics during Take-Off Phase in Ski Jumping

Author:

Hu Qi12ORCID,Tang Weidi1,Liu Yu1

Affiliation:

1. School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China

2. China Institute of Sport Science, Beijing 100061, China

Abstract

In view of the inability to directly and accurately obtain an athlete’s aerodynamic force during the take-off phase through the wind tunnel test, the athlete’s aerodynamic force and surrounding flow field form under different take-off postures are obtained through numerical simulation research, and the effects of different take-off modes on the aerodynamic characteristics during take-off in ski jumping are discussed. The multi-body system composed of the athlete and skis was selected as the research object. By using a partially averaged Navier–Stokes (PANS) turbulence model and a 3D numerical simulation of computational fluid dynamics (CFD), the aerodynamic characteristics of the athlete under different take-off postures were predicted. The take-off modes include the knee-push-hip (KPH) mode and hip-drive-knee (HDK) mode, and the hip joint angle of the HDK mode is significantly greater than that of the KPH mode. First, the aerodynamic force ratio of the athlete’s torso and legs is obviously large. Although the aerodynamic forces of arms themselves are not obvious, they have a great impact on the overall aerodynamic characteristics of the athlete, so the posture of the arms cannot be ignored. The total drag and moment of the HDK mode are significantly higher than that of the KPH mode, and the lift-to-drag ratio of the HDK mode is significantly lower than that of the KPH mode. At first, the total lift of the HDK mode is higher than that of the KPH mode, but in the last attitude, the total lift of the HDK mode does not rise but fall, and finally, the total lift of the HDK mode is lower than that of the KPH mode. The aerodynamic characteristics change dramatically during the take-off phase, and the aerodynamic characteristics of the two take-off modes are quite different, and these changes and differences are difficult to observe during real training and at the competition site. The KPH mode has an obvious aerodynamic advantage over the HDK mode. During the take-off process, the athlete should increase the force generated by the knee joint extension and appropriately reduce the speed of the hip joint extension, control the using force order of the lower limb joints, and push the hip joint extension by the knee joint extension in order to avoid issues, such as the hip joint angle being too large, the hip joint extension angle being too fast, the center of gravity being too far back, and other problems. Studying the aerodynamic characteristics during the take-off phase provides valuable insights for athletes to achieve favorable flight postures after take-off, offering scientific guidance to improve their training strategies and enhance their competitive performance.

Funder

National Natural Science Foundation of China

National key research and development plan project of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference26 articles.

1. A Review of Wind Tunnel Experimental Research on Aerodynamic Drag Reduction in Winter Sports;Hu;China Sport Sci.,2022

2. Virmavirta, M. (2016). The Engineering Approach to Winter Sports, Braghin. [6th ed.].

3. Elfmark, O., and Ettema, G. (2021). Aerodynamic investigation of the inrun position in Ski jumping. Sports Biomech., 19.

4. Effects of Athlete’s Posture on Aerodynamic Characteristics during Flight in Ski Jumping;Hu;J. Med. Biomech.,2021

5. Numerical investigation of the early flight phase in ski-jumping;Gardan;J. Biomech.,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3