Risk Assessment of Metals in Black Fungus and Culture Substrates Based on Monte Carlo Simulation

Author:

Qiu Jianfei12,Yao Fangjie1,Fan Huimei2,Wei Chunyan2,Song Zhifeng2

Affiliation:

1. College of Horticulture, Jilin Agricultural University, Changchun 130118, China

2. Jilin Academy of Agricultural Science (Northeast Agricultural Research Center of China), Risk Assessment Lab of Agri-Products Quality and Safety (Changchun), Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Changchun 130033, China

Abstract

Black fungus is the second-most consumed edible fungus in China. The establishment of a risk assessment mechanism for heavy metals in black fungus is particularly critical to the safety of edible fungi. To clarify a risk assessment mechanism of heavy metal pollution of edible fungi in northeast China, in this study, the contents of Pb, Cr, CD and As in 415 samples were determined, and a total of 1660 valid data were obtained. Then, based on Monte Carlo simulation, a non-parametric probability assessment system for heavy metals in black fungus was established and improved. The results showed that the residual amounts of As, Pb, Cd and Cr in black fungus were in the order of Cr > Pb > As > Cd. The background content of four heavy metals in the main raw materials was preliminarily clarified. Among them, the content of As is between 0.010–0.320 mg·kg−1, Pb is between 0.051–0.792 mg·kg−1, Cd is between 0.019–0.236 mg·kg−1, and Cr is between 0.06–3.41 mg·kg−1. These results indicate that the dietary exposure risk of heavy metals ingested by dried black fungus in Chinese minors and adults is basically safe, but at the high exposure levels of 97.5% sites and 99% sites, Cr is at the light pollution level, and the comprehensive pollution of four heavy metals is at the moderate pollution level. In addition, this study found that raw materials can cause heavy metal accumulation in black fungus, mainly from sawdust, followed by rice bran and wheat bran.

Funder

Fungus product quality safety risk factor investigation and critical control point evaluation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3