A Pavement Crack Detection and Evaluation Framework for a UAV Inspection System Based on Deep Learning

Author:

Chen Xinbao1ORCID,Liu Chang1,Chen Long1,Zhu Xiaodong1,Zhang Yaohui1,Wang Chenxi1

Affiliation:

1. School of Earth Sciences and Spatial Information Engineering, Hunan University of Sciences and Technology, Xiangtan 411201, China

Abstract

Existing studies often lack a systematic solution for an Unmanned Aerial Vehicles (UAV) inspection system, which hinders their widespread application in crack detection. To enhance its substantial practicality, this study proposes a formal and systematic framework for UAV inspection systems, specifically designed for automatic crack detection and pavement distress evaluation. The framework integrates UAV data acquisition, deep-learning-based crack identification, and road damage assessment in a comprehensive and orderly manner. Firstly, a flight control strategy is presented, and road crack data are collected using DJI Mini 2 UAV imagery, establishing high-quality UAV crack image datasets with ground truth information. Secondly, a validation and comparison study is conducted to enhance the automatic crack detection capability and provide an appropriate deployment scheme for UAV inspection systems. This study develops automatic crack detection models based on mainstream deep learning algorithms (namely, Faster-RCNN, YOLOv5s, YOLOv7-tiny, and YOLOv8s) in urban road scenarios. The results demonstrate that the Faster-RCNN algorithm achieves the highest accuracy and is suitable for the online data collection of UAV and offline inspection at work stations. Meanwhile, the YOLO models, while slightly lower in accuracy, are the fastest algorithms and are suitable for the lightweight deployment of UAV with online collection and real-time inspection. Quantitative measurement methods for road cracks are presented to assess road damage, which will enhance the application of UAV inspection systems and provide factual evidence for the maintenance decisions made by road authorities.

Funder

China Postdoctoral Science Foundation

Hunan Provincial Natural Science Foundation

Chinese national college students innovation and entrepreneurship training program

Publisher

MDPI AG

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3