Analysis of Stochastic Properties of MEMS Accelerometers and Gyroscopes Used in the Miniature Flight Data Recorder

Author:

Rzucidło Paweł1ORCID,Kopecki Grzegorz1,Szczerba Piotr1ORCID,Szwed Piotr2ORCID

Affiliation:

1. Faculty of Mechanical Engineering and Aeronautics, Rzeszów University of Technology, al. Powstańców Warszawy 8, 35-959 Rzeszów, Poland

2. Doctoral School of Engineering and Technical Sciences, Rzeszów University of Technology, al. Powstańców Warszawy 8, 35-959 Rzeszów, Poland

Abstract

MEMS (micro-electro-mechanical system) gyroscopes and accelerometers are used in several applications. They are very popular due to their small size, low price, and accessibility. The design of MEMS accelerometers enables the measurement of vibrations, with frequencies from tenths of hertz to even 1 kHz. MEMS gyroscopes can be applied to measure angular rates, and indirectly also angular oscillations with frequencies similar to accelerometers. Despite significant stochastic errors, MEMS sensors are used not only in popular domestic appliances (e.g., smartphones) but also in safety-critical units, such as aeronautical attitude and heading reference systems (AHRSs). In engineering, methods of stochastic properties analysis are important tools for sensor selection, verification, and the design of measurement algorithms. In this article, three methods used for the analysis of stochastic properties of sensors are presented and comparative analyses are shown. The applied measurement frequencies (1 kHz) were much higher than those typically found in MEMS sensor applications. Additionally, an exemplary analysis of temperature drift frequency, as well as the possibility for the synthesis of complementary filter parameters with the use of the described methods, is shown. Assessment of the stochastic properties of MEMS accelerometers and gyroscopes was performed under both constant and variable temperature conditions (during warm-up after switching on) with the use of classic methods, such as power spectral density (PSD) and Allan variance (AV), as well as the less known but very promising generalized method of wavelet moments (GMWM).

Publisher

MDPI AG

Reference52 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3