FFNN–TabNet: An Enhanced Stellar Age Determination Method Based on TabNet

Author:

Zhang Han12,Wu Yadong12,Zhang Weihan123,Zhang Yuling12

Affiliation:

1. School of Computer Science and Engineering, Sichuan University of Science and Engineering, Yibin 644000, China

2. Sichuan Province Big Data Visual Analysis Technology Engineering Laboratory, Sichuan University of Science and Engineering, Yibin 644000, China

3. Sichuan Key Provincial Research Base of Intelligent Tourism, Sichuan University of Science and Engineering, Zigong 643000, China

Abstract

The precise ascertainment of stellar ages is pivotal for astrophysical research into stellar characteristics and galactic dynamics. To address the prevalent challenges of suboptimal accuracy in stellar age determination and limited proficiency in apprehending nonlinear dynamics, this study introduces an enhanced model for stellar age determination, amalgamating the Feedforward Neural Network (FFNN) with TabNet (termed FFNN–TabNet). The methodology commences with the acquisition of a stellar dataset via meticulous cross-matching. Subsequent advancements encompass refinements to the activation functions within TabNet, coupled with augmentations to the Attentive transformer module by incorporating an FFNN module. These enhancements substantially boost training efficiency and precision in age estimation while amplifying the model’s capability to decode complex nonlinear interactions. Leveraging Bayesian Optimization Algorithm (BOA) for hyperparameter fine-tuning further elevates the model’s efficiency. Comprehensive ablation and comparative analyses validate the model’s superior performance in stellar age determination, demonstrating marked enhancements in accuracy. The experiment also demonstrates an enhanced ability of the model to capture nonlinear relationships between features.

Funder

Sichuan Provincial Department of Science and Technology Project

Sichuan Province Intelligent Tourism Research Base Project

Publisher

MDPI AG

Reference63 articles.

1. Time stamps of vertical phase mixing in the Galactic disk from LAMOST/Gaia stars;Tian;Astrophys. J. Lett.,2018

2. The first data release of LAMOST low-resolution single-epoch spectra;Bai;Res. Astron. Astrophys.,2021

3. Review of LAMOST Open Data Access and Future Prospect;Li;China Sci. Technol. Resour. Rev.,2022

4. Gaia Early Data Release 3-Building the Gaia DR3 source list–Cross-match of Gaia observations;Torra;Astron. Astrophys.,2021

5. Gaia data release 2-summary of the contents and survey properties;Brown;Astron. Astrophys.,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3