Bayesian Linguistic Conditional System as an Attention Mechanism in a Failure Mode and Effect Analysis

Author:

Baeza-Serrato Roberto1

Affiliation:

1. Departamento de Estudios Multidisciplinarios, División de Ingenierías, Campus Irapuato-Salamanca, Universidad de Guanajuato, Yuriria 38944, Guanajuato, Mexico

Abstract

Fuzzy Inference System behavior can be described qualitatively using a natural language, which is known as the expert-driven approach to handling non-statistical uncertainty. Generally, practical applications involve conceptualizing the problem by integrating linguistic uncertainty and using data by integrating stochastic uncertainty. The proposed probabilistic fuzzy system uses the Gaussian Density Function (GDF) to assign a probability to input variables integrating stochastic uncertainty. In addition, a linguistic interpretation is used to project various categories of the GDF integrating linguistic uncertainty. Likewise, one of the relevant aspects of the proposal is to weigh each input variable according to the heuristic interpretation that determines the probability assigned to each of them a priori. Therefore, the main contribution of the research focuses on using the Bayesian Linguistic Conditional System (BLCS) as a mechanism of attention to relate the categories of the different input variables and find their posterior-weighted probability at a normalization stage. Finally, the knowledge base is established through linguistic rules, and the system’s output is a Bayesian classifier multiplying its normalized posterior conditional probabilities. The highest probability value of the knowledge base is identified, and the Risk Priority Number Weighted (RPNW) is determined using their respective posterior-normalized probabilities for each input variable. The results are expressed on a simple and precise scale from 1 to 10. They are compared with the Risk Priority Number (RPN), which results in a Failure Mode and Effect Analysis (FMEA). They show similar behaviors for multiple combinations in the evaluations while highlighting different scales.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference33 articles.

1. Failure mode and effect analysis in asset maintenance: A multiple case study in the process industry;Braaksma;Int. J. Prod. Res.,2013

2. Nowlan, F.S., and Heap, H.F. (1992). Reliability-Centered Maintenance, Industrial Press Inc.

3. Multiple perspectives on analyzing risk factors in FMEA;Ouyang;Comput. Ind.,2022

4. Meghdadi, A.H., and Akbarzadeh-T, M.-R. (2001, January 2–5). Probabilistic fuzzy logic and probabilistic fuzzy systems. Proceedings of the Tenth IEEE International Conference on Fuzzy Systems, Melbourne, Australia.

5. Waltman, L. (2005). A Theoretical Analysis of Probabilistic Fuzzy Systems. [Ph.D. Dissertation, Erasmus University Rotterdam].

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3