Identification and Characterization of UDP-Glycosyltransferase Genes in a Cerambycid Beetle, Pharsalia antennata Gahan, 1894 (Coleoptera: Cerambycidae)

Author:

Yin Ningna,Wang Zhengquan,Xiao Haiyan,Lu Tingting,Liu NaiyongORCID

Abstract

The cerambycid beetle, Pharsalia antennata Gahan, 1894 (Coleoptera: Cerambycidae), is a wood-boring pest that spends most of its life cycle in the trunks or under the bark of trees. These distinctive biological characteristics make it likely that this beetle will encounter a number of plant defensive compounds, coupled with a broad range of host plants, possibly resulting in the overexpression or expansion of uridine diphosphate (UDP)-glycosyltransferase (UGT) genes. Here, we identified and characterized the UGT gene family in P. antennata through transcriptome data, sequence and phylogenetic analyses, and PCR and homology modeling approaches. In total, 59 transcripts encoding UGTs were identified, 34 of which harbored full-length sequences and shared high conservation with the UGTs of Anoplophora glabripennis. Of the 34 PantUGTs, only 31.78% amino acid identity was observed on average, but catalytic and sugar binding residues were highly conserved. Phylogenetic analyses revealed four Cerambycidae-specific clades, including 30 members from P. antennata. Combining the transcriptome and PCR data showed that PantUGTs had a wide tissue expression, and the majority of the genes were presented mainly in antennae or abdomens, suggesting their putative roles in olfaction and detoxification. This study provides, for the first time, information on the molecular and genetic basis of P. antennata, greatly enhancing our knowledge of the detoxification-related UGT gene family.

Funder

Yunnan Fundamental Research Project

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Agricultural and Biological Sciences (miscellaneous),Ecological Modeling,Ecology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3