Picoliter Cuvette inside an Optical Fiber to Track Gold Nanoparticle Aggregation for Measurement of Biomolecules

Author:

Shiraishi MasahikoORCID,Watanabe Kazuhiro,Kubodera Shoichi

Abstract

This study demonstrated a measurement approach for biomolecules at the picoliter scale, using a newly developed picoliter cuvette inside an optical fiber constructed via near-ultraviolet femtosecond laser drilling. The sensing capacity was estimated to be within 0.4–1.2 pL due to an optical path length of 3–5 microns, as measured by scanning electron microscopy (SEM). The picoliter cuvette exhibited a change in the optical extinction spectrum after addition of biomolecules such as L-cysteine, in conjunction with a gold nanoparticle (GNP) dispersion solution, following a simple measurement configuration involving a small white light source and a compact spectrometer. A linear attenuation of the spectral dip near a wavelength of 520 nm was observed as the L-cysteine concentration was increased at 4 wt% of the GNP mass concentration. The measurement resolution of the concentration using the picoliter cuvette was evaluated at 0.125 mM. The experimental results showed the difference in aggregation processes caused by a different concentration of GNPs. Moreover, they revealed the ability of the picoliter cuvette to verify whether the concentration of GNPs in the liquid sample correspondingly determines homogeneous or inhomogeneous GNP aggregation, as supported by SEM observation and numerical calculations based on Mie theory.

Funder

The Amada Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3