Abstract
Megacity sewage creates socioeconomic dependence related to water availability in nearby areas, especially in countries with hydric stress. The present article studies the past, current, and future water balance progression of realistic scenarios from 2005 to 2050 in the Mezquital Valley, the receptor of Mexico City untreated sewage since 1886, allowing for agriculture irrigation under unsustainable conditions. The Water Evaluation and Planning System (WEAP) was used to estimate water demand and supply, and validation was performed by comparing results with outflow data from the Tula River. Simulated scenarios were (1st) steady-state based on inertial growth rates (2nd) transient scenario concerning the influence of forecasted climate change perturbations in surface water and hydric stress for 2050; and (3rd) the previous scenario appending scheduled actions, such as 36% reduction in imported wastewater and the startup of a massive Wastewater Treatment Plant, allowing for drip and sprinkler irrigation from the year 2030. The main results are as follows: (a) in the period 2005–2017, 59% of the agriculture depended on flood irrigation with megacity sewage; (b) the outcomes of water balance scenarios up to 2050 are presented, with disaggregated sectorial supply of ground and superficial water; (c) drip irrigation would reduce agriculture demands by 42% but still does not guarantee the downflow hydroelectric requirements, aggravated by the lack of wastewater supply from 2030. This research highlights how present policies compromise future Valley demands.
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献