A Nonlinear Autoregressive Modeling Approach for Forecasting Groundwater Level Fluctuation in Urban Aquifers

Author:

Alsumaiei Abdullah A.ORCID

Abstract

The application of a nonlinear autoregressive modeling approach with exogenous input (NARX) neural networks for modeling groundwater level fluctuation has been examined by several researchers. However, the suitability of NARX in modeling groundwater level dynamics in urbanized and arid aquifer systems has not been comprehensively investigated. In this study, a NARX-based modeling approach is presented to establish a robust water management tool to aid urban water managers in controlling the development of shallow water tables induced by artificial recharge activity. Temperature data series are used as exogenous inputs for the NARX network, as they better reflect the intensity of artificial recharge activities, such as excessive lawns irrigation. Input delays and feedback delays for the NARX networks are determined based on the autocorrelation and cross-correlation analyses of detrended groundwater levels and monthly temperature averages. The validation of the proposed approach is assessed through a rolling validation procedure. Four observation wells in Kuwait City are selected to test the applicability of the proposed approach. The results showed the superiority of the NARX-based approach in modeling groundwater levels in such an urbanized and arid aquifer system, with coefficient of determination (R2) values ranging between 0.762 and 0.994 in the validation period. Comparison with other statistical models applied to the same study area shows that NARX models presented here reduced the mean absolute error (MAE) of groundwater levels forecasts by 50%. The findings of this paper are promising and provide a valuable tool for the urban city planner to assist in controlling the problem of shallow water tables for similar climatic and aquifer systems.

Funder

Kuwait University

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference46 articles.

Cited by 49 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3