Alleviating Effect of Lipid Phytochemicals in Seed Oil (Brassica napus L.) on Oxidative Stress Injury Induced by H2O2 in HepG2 Cells via Keap1/Nrf2/ARE Signaling Pathway

Author:

Peng Simin12ORCID,Liao Luyan2ORCID,Deng Huiqing2,Liu Xudong3ORCID,Lin Qian14,Wu Weiguo2

Affiliation:

1. Hunan Provincial Key Laboratory of the Traditional Chinese Medicine Agricultural Biogenomics, Changsha Medical University, Changsha 410219, China

2. College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China

3. State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410018, China

4. Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410125, China

Abstract

α-tocopherol (α-T), β-sitosterol (β-S), canolol (CA), and sinapic acid (SA) are the four main endogenous lipid phytochemicals (LP) found in Brassica napus L. seed oil, which possess the bioactivity to prevent the risk of several chronic diseases via antioxidant-associated mechanisms. Discovering the enhancer effects or synergies between LP is valuable for resisting oxidative stress and improving health benefits. The objectives of this study were to identify a potentially efficacious LP combination by central composite design (CCD) and cellular antioxidant activity (CAA) and to investigate its protective effect and potential mechanisms against H2O2-induced oxidative damage in HepG2 cells. Our results indicated that the optimal concentration of LP combination was α-T 10 μM, β-S 20 μM, SA 125 μM, and CA 125 μM, respectively, and its CAA value at the optimal condition was 10.782 μmol QE/100 g. At this concentration, LP combination exerted a greater amelioration effect on H2O2-induced HepG2 cell injury than either antioxidant (tea polyphenols or magnolol) alone. LP combination could reduce the cell apoptosis rate induced by H2O2, lowered to 10.06%, and could alleviate the degree of oxidative damage to cells (ROS↓), lipids (MDA↓), proteins (PC↓), and DNA (8-OHdG↓). Additionally, LP combination enhanced the antioxidant enzyme activities (SOD, CAT, GPX, and HO-1), as well as the T-AOC, and increased the GSH level in HepG2 cells. Furthermore, LP combination markedly upregulated the expression of Nrf2 and its associated antioxidant proteins. It also increased the expression levels of Nrf2 downstream antioxidant target gene (HO-1, SOD-1, MnSOD, CAT, GPX-1, and GPX-4) and downregulated the mRNA expression levels of Keap1. The oxidative-stress-induced formation of the Keap1/Nrf2 complex in the cytoplasm was significantly blocked by LP treatment. These results indicate that LP combination protected HepG2 cells from oxidative stress through a mechanism involving the activation of the Keap1/Nrf2/ARE signaling pathways.

Funder

Scientific Research Innovation Program of Hunan

Science and Technology Innovation Program of Hunan Province

Hunan Engineering Technology Research Center for Rapeseed Oil Nutrition Health and Deep Development

Oilseed Industry Technology System Processing Post expert project of Hunan Provincial Department of Agriculture and Rural Affairs Document

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3