Large Area Nanohole Arrays for Sensing Fabricated by Interference Lithography

Author:

Valsecchi Chiara,Gomez Armas Luis Enrique,Weber de Menezes JacsonORCID

Abstract

Several fabrication techniques are recently used to produce a nanopattern for sensing, as focused ion beam milling (FIB), e-beam lithography (EBL), nanoimprinting, and soft lithography. Here, interference lithography is explored for the fabrication of large area nanohole arrays in metal films as an efficient, flexible, and scalable production method. The transmission spectra in air of the 1 cm2 substrate were evaluated to study the substrate behavior when hole-size, periodicity, and film thickness are varied, in order to elucidate the best sample for the most effective sensing performance. The efficiency of the nanohole array was tested for bulk sensing and compared with other platforms found in the literature. The sensitivity of ~1000 nm/RIU, achieved with an array periodicity in the visible range, exceeds near infrared (NIR) performances previously reported, and demonstrates that interference lithography is one of the best alternative to other expensive and time-consuming nanofabrication methods.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3