Whole and Part Adaptive Fusion Graph Convolutional Networks for Skeleton-Based Action Recognition

Author:

Zuo QiORCID,Zou Lian,Fan Cien,Li Dongqian,Jiang Hao,Liu Yifeng

Abstract

Spatiotemporal graph convolution has made significant progress in skeleton-based action recognition in recent years. Most of the existing graph convolution methods take all the joints of the human skeleton as the overall modeling graph, ignoring the differences in the movement patterns of various parts of the human, and cannot well connect the relationship between the different parts of the human skeleton. To capture the unique features of different parts of human skeleton data and the correlation of different parts, we propose two new graph convolution methods: the whole graph convolution network (WGCN) and the part graph convolution network (PGCN). WGCN learns the whole scale skeleton spatiotemporal features according to the movement patterns and physical structure of the human skeleton. PGCN divides the human skeleton graph into several subgraphs to learn the part scale spatiotemporal features. Moreover, we propose an adaptive fusion module that combines the two features for multiple complementary adaptive fusion to obtain more effective skeleton features. By coupling these proposals, we build a whole and part adaptive fusion graph convolution neural network (WPGCN) that outperforms previous state-of-the-art methods on three large-scale datasets: NTU RGB+D 60, NTU RGB+D 120, and Kinetics Skeleton 400.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3