Using a Novel Approach to Estimate Packing Density and Related Electrical Resistance in Multiwall Carbon Nanotube Networks

Author:

Philipose UshaORCID,Jiang YanORCID,Farmer Gavin,Howard Chris,Harcrow Michael,Littler Chris,Lopes Vincent,Syllaios Athanasios J.,Sood Ashok,Zeller John W.

Abstract

In this work, we use contrast image processing to estimate the concentration of multi-wall carbon nanotubes (MWCNT) in a given network. The fractal dimension factor (D) of the CNT network that provides an estimate of its geometrical complexity, is determined and correlated to network resistance. Six fabricated devices with different CNT concentrations exhibit D factors ranging from 1.82 to 1.98. The lower D-factor was associated with the highly complex network with a large number of CNTs in it. The less complex network, having the lower density of CNTs had the highest D factor of approximately 2, which is the characteristic value for a two-dimensional network. The electrical resistance of the thin MWCNT network was found to scale with the areal mass density of MWCNTs by a power law, with a percolation exponent of 1.42 and a percolation threshold of 0.12 μg/cm2. The sheet resistance of the films with a high concentration of MWCNTs was about six orders of magnitude lower than that of less dense networks; an effect attributed to an increase in the number of CNT–CNT contacts, enabling more efficient electron transfer. The dependence of the resistance on the areal density of CNTs in the network and on CNT network complexity was analyzed to validate a two-dimension percolation behavior.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3