Uranium Carbide Fibers with Nano-Grains as Starting Materials for ISOL Targets

Author:

Chowdhury Sanjib,Maria LeonorORCID,Cruz Adelaide,Manara Dario,Dieste-Blanco OlivierORCID,Stora Thierry,Gonçalves AntónioORCID

Abstract

This paper presents an experimental study about the preparation, by electrospinning, of uranium carbide fibers with nanometric grain size. Viscous solutions of cellulose acetate and uranyl salts (acetate, acetylacetonate, and formate) on acetic acid and 2,4-pentanedione, adjusted to three different polymer concentrations, 10, 12.5, and 15 weight %, were used for electrospinning. Good quality precursor fibers were obtained from solutions with a 15% cellulose acetate concentration, the best ones being produced from the uranyl acetate solution. As-spun precursor fibers were then decomposed by slow heating until 823 K under argon, resulting in a mixture of nano-grained UO2 and C fibers. A last carboreduction was then carried out under vacuum at 2073 K for 2 h. The final material displayed UC2−y as the major phase, with grain sizes in the 4 nm–10 nm range. UO2+x was still present in moderate concentrations (~30 vol.%). This is due to uncomplete carboreduction that can be explained by the fiber morphology, limiting the effective contact between C and UO2 grains.

Funder

Fundação para a Ciência e a Tecnologia

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3