Abstract
Clean water scarcity is still an intense, prolonged global issue that needs to be resolved urgently. The solar steam generation has shown great potential with a high energy conversion efficiency for clean water production from seawater and wastewater. However, the high evaporation rate of water cannot be preserved due to the inevitable fouling of solar absorbers. Herein, a self-floatable and super hydrophilic solar-driven steam generator composed of activated carbon coated melamine foam (ACM). The deposited ACM photothermal layer exhibits outstanding solar absorption (92%) and an efficient evaporation rate of 1.27 kg m−2 h−1, along with excellent photothermal conversion efficiency (80%) as compared to commercially available primitive solar stills. The open porous assembly of melamine foam equipped with 80% flexibility (0.8 MPa) enabled smooth water transport and sustain heat accumulation within the matrix. The thermal insulation of ACM is 10 times greater than pure water. Moreover, open porous assembly of designed solar-powered steam generator rejects salt ions as well as volatile organic compounds efficiently. The low-cost and facile fabrication of photothermal based water production presents a potential solution to single step drinking water supply from various resources of the sea, the lakes and mixtures of emulsified oil and industrial wastewater.
Subject
General Materials Science,General Chemical Engineering
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献