Abstract
A better understanding of the impact of molecular size and linkers is important for PEG-based hyperbranched polymers (HBPs) intended as tailored drug delivery vehicles. This study aimed to evaluate the effects of crosslinker chemistry (cleavable disulphide versus non-cleavable ethylene glycol methacrylate (EGDMA) linkers) and molecular weight within the expected size range for efficient renal elimination (22 vs. 48 kDa) on the intravenous pharmacokinetic and biodistribution properties of 89Zr-labelled HBPs in rats. All HBPs showed similar plasma pharmacokinetics over 72 h, despite differences in linker chemistry and size. A larger proportion of HBP with the cleavable linker was eliminated via the urine and faeces compared to a similar-sized HBP with the non-cleavable linker, while size had no impact on the proportion of the dose excreted. The higher molecular weight HBPs accumulated in organs of the mononuclear phagocyte system (liver and spleen) more avidly than the smaller HBP. These results suggest that HBPs within the 22 to 48 kDa size range show no differences in plasma pharmacokinetics, but distinct patterns of organ biodistribution and elimination are evident.
Subject
General Materials Science,General Chemical Engineering
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献