Design and Simulation of Low-Threshold Miniaturized Single-Mode Nanowire Lasers Combined with a Photonic Crystal Microcavity and Asymmetric Distributed-Bragg-Reflector Mirrors

Author:

Wu Chao,Wei Wei,Yuan XueguangORCID,Zhang Yangan,Yan XinORCID,Zhang Xia

Abstract

A low-threshold miniaturized single-mode nanowire laser operating at telecommunication wavelengths was proposed and simulated. The device was constructed by combining a single InGaAs nanowire with a photonic crystal microcavity and asymmetric distributed-Bragg-reflector mirrors. The mode characteristics and threshold properties were calculated using the three-dimensional finite-different time-domain method. Due to the effective subwavelength confinement and strong optical feedback, provided by the photonic crystal microcavity, and distributed-Bragg-reflector mirrors, respectively, the confinement factor, end-facet reflectivity, and quality factor significantly improved. A lowest threshold of ~80 cm−1 and ultra-small cut-off radius of ~40 nm are obtained, reduced by 67%, and 70%, respectively, compared with a traditional nanowire laser. In addition, due to the photonic band gap effect, single-mode lasing is achieved with a high side-mode suppression ratio of >12 dB. By placing several identical nanowires in the photonic crystal with different lattice constants, an on-chip laser array is realized, which is promising in wavelength division multiplexing applications. This work may pave the way for the development of low-threshold miniaturized nanolasers and low-consumption high-density photonic integrated circuits.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3