The Effects of a Varied Gold Shell Thickness on Iron Oxide Nanoparticle Cores in Magnetic Manipulation, T1 and T2 MRI Contrasting, and Magnetic Hyperthermia

Author:

Brennan GraceORCID,Bergamino Silvia,Pescio Martina,Tofail Syed A. M.,Silien Christophe

Abstract

Fe3O4–Au core–shell magnetic-plasmonic nanoparticles are expected to combine both magnetic and light responsivity into a single nanosystem, facilitating combined optical and magnetic-based nanotheranostic (therapeutic and diagnostic) applications, for example, photothermal therapy in conjunction with magnetic resonance imaging (MRI) imaging. To date, the effects of a plasmonic gold shell on an iron oxide nanoparticle core in magnetic-based applications remains largely unexplored. For this study, we quantified the efficacy of magnetic iron oxide cores with various gold shell thicknesses in a number of popular magnetic-based nanotheranostic applications; these included magnetic sorting and targeting (quantifying magnetic manipulability and magnetophoresis), MRI contrasting (quantifying benchtop nuclear magnetic resonance (NMR)-based T1 and T2 relaxivity), and magnetic hyperthermia therapy (quantifying alternating magnetic-field heating). We observed a general decrease in magnetic response and efficacy with an increase of the gold shell thickness, and herein we discuss possible reasons for this reduction. The magnetophoresis speed of iron oxide nanoparticles coated with the thickest gold shell tested here (ca. 42 nm) was only ca. 1% of the non-coated bare magnetic nanoparticle, demonstrating reduced magnetic manipulability. The T1 relaxivity, r1, of the thick gold-shelled magnetic particle was ca. 22% of the purely magnetic counterpart, whereas the T2 relaxivity, r2, was 42%, indicating a reduced MRI contrasting. Lastly, the magnetic hyperthermia heating efficiency (intrinsic loss power parameter) was reduced to ca. 14% for the thickest gold shell. For all applications, the efficiency decayed exponentially with increased gold shell thickness; therefore, if the primary application of the nanostructure is magnetic-based, this work suggests that it is preferable to use a thinner gold shell or higher levels of stimuli to compensate for losses associated with the addition of the gold shell. Moreover, as thinner gold shells have better magnetic properties, have previously demonstrated superior optical properties, and are more economical than thick gold shells, it can be said that “less is more”.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3