Abstract
Ubiquitous mobile electronic devices and rapidly increasing electric vehicles demand a better lithium ion battery (LIB) with a more durable and higher specific charge storage capacity than traditional graphite-based ones. Silicon is among the most promising active media since it exhibits ten times of a specific capacity. However, alloying with lithium by silicon and dissociation of the silicon-lithium alloys induce high volume changes and result in pulverization. The loss of electrical contacts by silicon with the current collector of the anode causes rapid capacity decay. We report improved anode cycling performance made of silicon flakes partially encapsulated by silicon dioxide and coated with conductive nanocarbon films and CNTs. The silicon dioxide surface layer on a silicon flake improves the physical integrity for a silicon-based anode. The exposed silicon surface provides a fast transport of lithium ions and electrons. CNTs and nanocarbon films provide electrical connections between silicon flakes and the current collector. We report a novel way of manufacturing silicon flakes partially covered by silicon dioxide through breaking oxidized silicon flakes into smaller pieces. Additionally, we demonstrate an improved cycling life and capacity retention compared to pristine silicon flakes and silicon flakes fully encapsulated by silicon dioxide. Nanocarbon coatings provide conduction channels and further improve the anode performance.
Subject
General Materials Science,General Chemical Engineering
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献