Evolution of Surface Catalytic Sites on Bimetal Silica-Based Fenton-Like Catalysts for Degradation of Dyes with Different Molecular Charges

Author:

Trendafilova IvalinaORCID,Šuligoj AndražORCID,Ristić AlenkaORCID,Van de Velde Nigel,Dražić GoranORCID,Opresnik Mojca,Zabukovec Logar NatašaORCID,Pintar AlbinORCID,Novak Tušar NatašaORCID

Abstract

We present here important new findings on the direct synthesis of bimetal Cu-Mn containing porous silica catalyst and the effects of structure-directing agent removal from the prepared nanomaterial on the evolution of surface catalytic sites. The extraction-calcination procedure of the structure-directing agent removal led to the formation of Cu and Mn oxo-clusters and Cu and Mn oxide nanoparticles smaller than 5 nm, while the solely calcination procedure led to the mentioned species and in addition to the appearance of CuO nanoparticles 20 nm in size. Catalysts were tested in the Fenton-like catalytic degradation of dyes with different molecular charge (cationic, anionic, and zwitterionic) as model organic pollutants in wastewater at neutral pH. Significantly faster degradation of cationic and anionic dyes in the first 60 min was observed with the catalyst containing larger CuO nanoparticles (>20 nm) due to the less hindered generation of •OH radicals and slower obstructing of the active sites on the catalysts surface by intermediates. However, this was not found beneficial for zwitterionic dye with no adsorption on the catalysts surface, where the catalyst with smaller Cu species performed better.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3