Nonvolatile, Reconfigurable and Narrowband Mid-Infrared Filter Based on Surface Lattice Resonance in Phase-Change Ge2Sb2Te5

Author:

Shi Xingzhe,Chen Changshui,Liu Songhao,Li GuangyuanORCID

Abstract

We propose a nonvolatile, reconfigurable, and narrowband mid-infrared bandpass filter based on surface lattice resonance in phase-change material Ge2Sb2Te5. The proposed filter is composed of a two-dimensional gold nanorod array embedded in a thick Ge2Sb2Te5 film. Results show that when Ge2Sb2Te5 transits from the amorphous state to the crystalline state, the narrowband reflection spectrum of the proposed filter is tuned from 3.197 μm to 4.795 μm, covering the majority of the mid-infrared regime, the peak reflectance decreases from 72.6% to 25.8%, and the corresponding quality factor decreases from 19.6 to 10.3. We show that the spectral tuning range can be adjusted by varying the incidence angle or the lattice period. By properly designing the gold nanorod sizes, we also show that the quality factor can be greatly increased to 70 at the cost of relatively smaller peak reflection efficiencies, and that the peak reflection efficiency can be further increased to 80% at the cost of relatively smaller quality factors. We expect that this work will advance the engineering of Ge2Sb2Te5-based nonvalatile tunable surface lattice resonances and will promote their applications especially in reconfigurable narrowband filters.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3